题目内容

【题目】如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF=∠BAE.
(1)求证:四边形AEFD是平行四边形;
(2)若DF=3,DE=4,AD=5,求CD的长度.

【答案】
(1)证明:∵四边形ABCD是矩形,

∴AB=DC,∠B=∠DCF=90°,

∵∠BAE=∠CDF,

在△ABE和△DCF中,

∴△ABE≌△DCF(ASA),

∴BE=CF,

∴BC=EF,

∵BC=AD,

∴EF=AD,

又∵EF∥AD,

∴四边形AEFD是平行四边形;


(2)解:由(1)知:EF=AD=5,

在△EFD中,∵DF=3,DE=4,EF=5,

∴DE2+DF2=EF2

∴∠EDF=90°,

EDDF= EFCD,

∴CD=


【解析】(1)直接利用矩形的性质结合全等三角形的判定与性质得出BE=CF,进而得出答案;(2)利用勾股定理的逆定理得出∠EDF=90°,进而得出 EDDF= EFCD,求出答案即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网