题目内容

⊙O的半径为5,弦AB∥CD,AB=6,CD=8,则AB与CD距离为


  1. A.
    7
  2. B.
    8
  3. C.
    7或1
  4. D.
    1
C
分析:过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,由AB∥CD,得到OF⊥CD,根据垂径定理得AE=3,CF=4,再在Rt△OAE中和在Rt△OCF中分别利用勾股定理求出OE,OF,然后讨论:当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF;当圆O点不在AB、CD之间,AB与CD之间的距离=OE-OF.
解答:解:过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,如图,
∵AB∥CD,
∴OF⊥CD,
∴AE=BE,CF=DF,
而AB=6,CD=8,
∴AE=3,CF=4,
在Rt△OAE中,OA=5,OE===4;
在Rt△OCF中,OC=5,OF===3;
当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF=7;
当圆O点不在AB、CD之间,AB与CD之间的距离=OE-OF=1;
所以AB与CD之间的距离为7或1.
故选C.
点评:本题考查了垂径定理,即垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理以及分类讨论的思想的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网