题目内容

如图,△ABC是锐角三角形,BC=120,高AD=80,矩形PQMN的顶点P、N分别在AB、AC上,M、Q在BC上,AD与PN交于点E,请问矩形PQMN的面积什么时候最大,最大面积是多少?

【答案】分析:设长方形零件PQMN的边AE=x,矩形PQMN的面积为S,利用△APN∽△ABC得相似比,用相似比可得出用含x的式子表示S,从而得出二次函数解析式,根据解析式及自变量取值范围求S的最大值.
解答:解:∵四边形PQMN是矩形,
∴PN∥BC,∠PQM=90°,∠QPN=90°,
∴△PAN∽△ABC,
∵AD是高,
∴∠ADB=90°,
∴四边形PQDE是矩形,∠AEN=90°,
,PQ=DE,
设AE=x,矩形PQMN的面积为S,
,DE=80-x,
,PQ=80-x,

∴当x=40时,S的最大值为2400,
∴当AE=40时,矩形PQMN的面积最大,最大面积是2400.
点评:本题用二次函数的方法解决面积问题,是函数性质的实际运用,需要从计算矩形面积着手,求矩形的长、宽,同时考查了拼接问题,需要从图形的特殊性着手.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网