题目内容

【题目】如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是(
A.4
B.3
C.2
D.

【答案】B
【解析】解:∵四边形ABCD是菱形, ∴BC=CD,∠B=∠D=60°,
∵AE⊥BC,AF⊥CD,
∴BC×AE=CD×AF,∠BAE=∠DAF=30°,
∴AE=AF,
∵∠B=60°,
∴∠BAD=120°,
∴∠EAF=120°﹣30°﹣30°=60°,
∴△AEF是等边三角形,
∴AE=EF,∠AEF=60°,
∵AB=4,
∴BE=2,
∴AE= =2
∴EF=AE=2
过A作AM⊥EF,
∴AM=AEsin60°=3,
∴△AEF的面积是: EFAM= ×2 ×3=3
故选:B.

【考点精析】本题主要考查了菱形的性质的相关知识点,需要掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网