ÌâÄ¿ÄÚÈÝ
ÎÒÃÇÖªµÀÁ½¸öÒ»´Îº¯Êýy=k1x+b1£¬y=k2x+b2£¬µ±k1=k2ʱ£¬ÕâÁ½¸öÒ»´Îº¯ÊýµÄͼÏóÏ໥ƽÐУ¬ÄÇôÁ½¸öÒ»´Îº¯ÊýµÄͼÏóʲôÇé¿öÏÂÏ໥´¹Ö±ÄØ£¿ÏÂÃæÎÒÃǾÍÀ´Ì½Ë÷£®
£¨1£©»Ò»»
ÔÚͬһƽÃæÖ±½Ç×ø±êϵÏ»³öÒ»´Îº¯Êýy=2x+1£¬y=-2x+3£¬y=
x-1£¬y=-
x+2µÄͼÏó£»
£¨2£©ÏëÒ»Ïë
×Ðϸ¹Û²ìͼÏ󣬽áºÏËĸöÒ»´Îº¯ÊýµÄ½âÎöʽÌá³ö²ÂÏ룺µ±
£¨3£©ÓÃÒ»ÓÃ
ÀûÓã¨2£©ÖеĽáÂÛ½â¾öÏÂÃæÎÊÌâÈçͼ£ºÒÑÖªÕý±ÈÀýº¯Êýy=
xµÄͼÏóºÍ¡ÑPÏàÇÐÓÚµãA£¬µãPÔÚxÖáÉÏ£¬OP=3ÀåÃ×£¬Çó¡ÑPµÄÃæ»ý£®
£¨1£©»Ò»»
ÔÚͬһƽÃæÖ±½Ç×ø±êϵÏ»³öÒ»´Îº¯Êýy=2x+1£¬y=-2x+3£¬y=
1 |
2 |
1 |
2 |
£¨2£©ÏëÒ»Ïë
×Ðϸ¹Û²ìͼÏ󣬽áºÏËĸöÒ»´Îº¯ÊýµÄ½âÎöʽÌá³ö²ÂÏ룺µ±
k1•k2=-1
k1•k2=-1
ʱ£¬Á½¸öÒ»´Îº¯Êýy=k1x+b1£¬y=k2x+b2µÄͼÏóÏ໥´¹Ö±£»£¨3£©ÓÃÒ»ÓÃ
ÀûÓã¨2£©ÖеĽáÂÛ½â¾öÏÂÃæÎÊÌâÈçͼ£ºÒÑÖªÕý±ÈÀýº¯Êýy=
1 |
2 |
·ÖÎö£º£¨1£©·Ö±ðÇó³öÖ±ÏßÓë×ø±êÖáµÄ½»µã£¬È»ºó¸ù¾ÝÁ½µãÈ·¶¨Ò»ÌõÖ±Ïߣ¬ÀûÓÃÁ½µã·¨×÷³öÖ±ÏßͼÏó¼´¿É£»
£¨2£©½áºÏͼÏó¸ù¾Ý»¥Ïà´¹Ö±µÄÁ½Ö±Ïß½âÎöʽµÄkÖµ½â´ð£»
£¨3£©¸ù¾Ý£¨2£©µÄ½áÂÛÇó³öÖ±ÏßAPµÄkÖµ£¬È»ºóÇó³öÖ±ÏßAPµÄ½âÎöʽ£¬ÓëOAµÄ½âÎöʽÁªÁ¢Çó½âµÃµ½µãAµÄ×ø±ê£¬ÔÙÀûÓù´¹É¶¨ÀíÇó³öOAµÄ³¤¶È£¬ÔÙ´ÎÀûÓù´¹É¶¨ÀíÇó³öPAµÄ³¤¶È£¬È»ºó¸ù¾ÝÔ²µÄÃæ»ý¹«Ê½ÁÐʽ¼ÆËã¼´¿ÉµÃ½â£®
£¨2£©½áºÏͼÏó¸ù¾Ý»¥Ïà´¹Ö±µÄÁ½Ö±Ïß½âÎöʽµÄkÖµ½â´ð£»
£¨3£©¸ù¾Ý£¨2£©µÄ½áÂÛÇó³öÖ±ÏßAPµÄkÖµ£¬È»ºóÇó³öÖ±ÏßAPµÄ½âÎöʽ£¬ÓëOAµÄ½âÎöʽÁªÁ¢Çó½âµÃµ½µãAµÄ×ø±ê£¬ÔÙÀûÓù´¹É¶¨ÀíÇó³öOAµÄ³¤¶È£¬ÔÙ´ÎÀûÓù´¹É¶¨ÀíÇó³öPAµÄ³¤¶È£¬È»ºó¸ù¾ÝÔ²µÄÃæ»ý¹«Ê½ÁÐʽ¼ÆËã¼´¿ÉµÃ½â£®
½â´ð£º½â£º£¨1£©¢Ùx=0ʱ£¬y=1£¬y=0ʱ£¬2x+1=0£¬½âµÃx=-
£¬
ËùÒÔ£¬Ö±Ïßy=2x+1¾¹ýµã£¨0£¬1£©£¨-
£¬0£©£¬
¢Úµ±x=0ʱ£¬y=3£¬µ±y=0ʱ£¬-2x+3=0£¬½âµÃx=
£¬
ËùÒÔ£¬Ö±Ïßy=-2x+3¾¹ýµã£¨0£¬3£©£¨
£¬0£©£¬
¢Ûµ±x=0ʱ£¬y=-1£¬µ±y=0ʱ£¬
x-1=0£¬½âµÃx=2£¬
ËùÒÔ£¬Ö±Ïßy=
x-1¾¹ýµã£¨0£¬-1£©£¨2£¬0£©£¬
¢Üµ±x=0ʱ£¬y=2£¬µ±y=0ʱ£¬-
x+2=0£¬½âµÃx=4£¬
ËùÒÔ£¬Ö±Ïßy=-
x+2¾¹ýµã£¨0£¬2£©£¨4£¬0£©£¬
×÷ͼÈçͼËùʾ£»
£¨2£©ÓÉͼ¿ÉÖª£¬y=2x+1Óëy=-
x+2´¹Ö±£¬y=-2x+3Óëy=
x-1´¹Ö±£¬
¡ß2¡Á£¨-
£©=-1£¬-2¡Á
=-1£¬
¡à²ÂÏëµ±k1•k2=-1ʱ£¬y=k1x+b1£¬y=k2x+b2µÄͼÏóÏ໥´¹Ö±£»
¹Ê´ð°¸Îª£ºk1•k2=-1£»
£¨3£©¸ù¾Ý£¨2£©µÄ½áÂÛ£¬
¡ßÕý±ÈÀýº¯Êýy=
xµÄͼÏóºÍ¡ÑPÏàÇÐÓÚµãA£¬
¡àÖ±ÏßAPµÄkÖµµÈÓÚ-2£¬
ËùÒÔ£¬ÉèÖ±ÏßAPµÄ½âÎöʽΪy=-2x+b£¬
¡ßOP=3£¬
¡àµãPµÄ×ø±êΪ£¨3£¬0£©£¬
¡à-2¡Á3+b=0£¬
½âµÃb=6£¬
¡àÖ±ÏßAPµÄ½âÎöʽΪy=-2x+6£¬
ÁªÁ¢
£¬
½âµÃ
£¬
ËùÒÔ£¬OA=
=
£¬
AP=
=
=
£¬
¡ÑPµÄÃæ»ý=¦Ð•AP2=¦Ð•£¨
£©2=
¦Ð£®
1 |
2 |
ËùÒÔ£¬Ö±Ïßy=2x+1¾¹ýµã£¨0£¬1£©£¨-
1 |
2 |
¢Úµ±x=0ʱ£¬y=3£¬µ±y=0ʱ£¬-2x+3=0£¬½âµÃx=
3 |
2 |
ËùÒÔ£¬Ö±Ïßy=-2x+3¾¹ýµã£¨0£¬3£©£¨
3 |
2 |
¢Ûµ±x=0ʱ£¬y=-1£¬µ±y=0ʱ£¬
1 |
2 |
ËùÒÔ£¬Ö±Ïßy=
1 |
2 |
¢Üµ±x=0ʱ£¬y=2£¬µ±y=0ʱ£¬-
1 |
2 |
ËùÒÔ£¬Ö±Ïßy=-
1 |
2 |
×÷ͼÈçͼËùʾ£»
£¨2£©ÓÉͼ¿ÉÖª£¬y=2x+1Óëy=-
1 |
2 |
1 |
2 |
¡ß2¡Á£¨-
1 |
2 |
1 |
2 |
¡à²ÂÏëµ±k1•k2=-1ʱ£¬y=k1x+b1£¬y=k2x+b2µÄͼÏóÏ໥´¹Ö±£»
¹Ê´ð°¸Îª£ºk1•k2=-1£»
£¨3£©¸ù¾Ý£¨2£©µÄ½áÂÛ£¬
¡ßÕý±ÈÀýº¯Êýy=
1 |
2 |
¡àÖ±ÏßAPµÄkÖµµÈÓÚ-2£¬
ËùÒÔ£¬ÉèÖ±ÏßAPµÄ½âÎöʽΪy=-2x+b£¬
¡ßOP=3£¬
¡àµãPµÄ×ø±êΪ£¨3£¬0£©£¬
¡à-2¡Á3+b=0£¬
½âµÃb=6£¬
¡àÖ±ÏßAPµÄ½âÎöʽΪy=-2x+6£¬
ÁªÁ¢
|
½âµÃ
|
ËùÒÔ£¬OA=
(
|
6 |
5 |
5 |
AP=
OP2-OA2 |
9-
|
3 |
5 |
5 |
¡ÑPµÄÃæ»ý=¦Ð•AP2=¦Ð•£¨
3 |
5 |
5 |
9 |
5 |
µãÆÀ£º±¾ÌâÊǶÔÒ»´Îº¯ÊýµÄ×ۺϿ¼²é£¬Ö÷ÒªÉæ¼°ÀûÓÃÁ½µã·¨×÷Ò»´Îº¯ÊýͼÏó£¬ÁªÁ¢Á½Ö±Ïß½âÎöʽÇóÖ±ÏߵĽ»µã£¬¹´¹É¶¨ÀíµÄÓ¦Óã¬ÊÇ×ÛºÏÌ⣬µ«ÄѶȲ»´ó£¬¶Á¶®ÌâÄ¿ÐÅÏ¢£¬×¼È·×÷³öͼÐÎÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿