题目内容
(23-1)(33-1)(43-1)…(1003-1) |
(23+1)(33+1)(43+1)…(1003+1) |
A、
| ||
B、
| ||
C、
| ||
D、
|
分析:首先根据n3-1=(n-1)(n2+n+1)和(n+1)3+1=(n+1+1)[(n+1)2-(n+1)+1]=(n+2)(n2+n+1),求出n3-1和(n+1)3+1的比,然后进行化简求出答案.
解答:解:∵n3-1=(n-1)(n2+n+1),
(n+1)3+1=(n+1+1)[(n+1)2-(n+1)+1],
=(n+2)(n2+n+1),
∴
=
=
(n≥2),
∴
,
=
,
=
,
=
≈
.
故选B.
(n+1)3+1=(n+1+1)[(n+1)2-(n+1)+1],
=(n+2)(n2+n+1),
∴
(n3-1) |
[(n+1)3+1] |
[(n-1)(n2+n+1)] |
[(n+2)(n2+n+1)] |
n-1 |
n+2 |
∴
(23-1)(33-1)(43-1)…(1003-1) |
(23+1)(33+1)(43+1)…(1003+1) |
=
1×2×3…×99×(1002+100+1) |
9×4×…×102 |
=
1×2×3…×99×(1002+100+1) |
9×4×…×100×101 |
=
1×2×3×(1002+100+1) |
9×100×101 |
2 |
3 |
故选B.
点评:本题主要考查立方公式的知识点,解答本题的关键是求出n3-1和(n+1)3+1的比,本题难度较大.
练习册系列答案
相关题目