题目内容

求证:对于任何实数x,代数式2x2+4x+3的值总大于0.
【答案】分析:将代数式前两项提取2,配方后根据完全平方式为非负数,得到代数式大于等于1,即对于任何实数x,代数式2x2+4x+3的值总大于0,得证.
解答:证明:∵对于任何实数x,(x+1)2≥0,
∴x2+4x+3=2(x2+2x)+3=2(x2+2x+1)+1=2(x+1)2+1≥1>0,
则对于任何实数x,代数式2x2+4x+3的值总大于0.
点评:此题考查了配方法的应用,以及非负数的性质:偶次幂,灵活应用完全平方公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网