题目内容
如图,某测量船位于海岛P的北偏西60°方向,距离海岛200海里的A处,它沿正南方向航行一段时间后,到达位于海岛P的西南方向上的B处.求测量船从A处航行到B处的路程(结果保留根号).
七年级某班组织班队活动,班委会准备买一些奖品。.班长王倩拿15元钱去商店全部用来购买钢笔和笔记本两种奖品,已知钢笔2元/支,笔记本1元/本,且每样东西至少买一件。
1.有多少种购买方案?请列举所有可能的结果;
2.从上述方案中任选一种方案购买,求买到的钢笔与笔记本数量相等的概率。
如图,下列判断正确的是( )
A. 若∠1=∠2,则AD∥BC B. 若∠1=∠2.则AB∥CD
C. 若∠A=∠3,则 AD∥BC D. 若∠A+∠ADC=180°,则AD∥BC
如图,已知E、F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正确结论的个数是( )
A. 5个 B. 4个 C. 3个 D. 2个
四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )
A. B. C. D. 1
已知实数m,n满足m-n2=2,则代数式m2+2n2+4m-1的最小值等于______.
如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE,以AE为腰,A为顶角顶点作等腰Rt△ADE,连接CD,当CD最大时,∠DEC的度数为( )
A. 60° B. 75° C. 90° D. 67.5°
若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上则称此直线l与该抛物线L具有“一带一路”的关系,此时直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”。若直线y=mx+4与y=x2-4x+n具有“一带一路”的关系则m=________,n=_________。
在△ABC中,BC=AC,∠C=90°,直角顶点C在x轴上,一锐角顶点B在y轴上.
(1)如图①若AD于垂直x轴,垂足为点D.点C坐标是(﹣1,0),点A的坐标是(﹣3,1),求点B的坐标.
(2)如图②,直角边BC在两坐标轴上滑动,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,请猜想BD与AE有怎样的数量关系,并证明你的猜想.
(3)如图③,直角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y轴于F,在滑动的过程中,请猜想OC,AF,OB之间有怎样的关系(直接写出结论,不需要证明)