题目内容
【题目】如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).
(1) 求点B的坐标;
(2) 若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;
(3) 在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由.
【答案】
【1】()
【2】y=x2+x.
【3】(),
【解析】
(1) 在Rt△OAB中,∵∠AOB=30°,∴ OB=. 过点B作BD垂直于x轴,垂足为D,则 OD=,BD=,∴点B的坐标为() .
(2) 将A(2,0)、B ()、O(0,0)三点的坐标代入y=ax2+bx+c,得
解有a=,b=,c="0." ∴所求二次函数解析式是 y=x2+x.
(3) 设存在点C (x ,x2+x) (其中0<x<),使四边形ABCO面积最大.
∵△OAB面积为定值,
∴只要△OBC面积最大,四边形ABCO面积就最大.
过点C作x轴的垂线CE,垂足为E,交OB于点F,则
S△OBC= S△OCF+S△BCF==,
而 |CF|=yC-yF=,
∴ S△OBC=.
∴当x=时,△OBC面积最大,最大面积为.
此时,点C坐标为(),四边形ABCO的面积为.
【题目】根据扬州市某风景区的旅游信息,公司组织一批员工到该风景区旅游,支付给旅行社元. 公司参加这次旅游的员工有多少人?
扬州市某风景区旅游信息表
旅游人数 | 收费标准 |
不超过人 | 人均收费元 |
超过人 | 每增加人,人均收费降低元,但人均收费不低于元 |
【题目】在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共4个,某学习小组进行摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再放回,下表是活动进行中的一组统计数据:
摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到黑球的次数m | 23 | 33 | 60 | 130 | 202 | 251 |
摸到黑球的频率 |
当n很大时,估计从袋中摸出一个黑球的概率是______;
试估算口袋中白球有______个;
在的条件下,若从中先换出一球,不放回,摇匀后再摸出一球,请用列表或树状图的方法求两次都摸到白球的概率.