题目内容
【题目】如图,在矩形ABCD中,E是BC边的中点,将△ABE沿AE所在的直线折叠得到△AFE,延长AF交CD于点G,已知CG=2,DG=1,则BC的长是( )
A.3B.2C.2D.2
【答案】B
【解析】
连接EG,由折叠的性质可得BE=EF又由E是BC边的中点,可得EF=EC,然后证得Rt△EGF≌Rt△EGC(HL),得出FG=CG=2,继而求得线段AG的长,再利用勾股定理求解,即可求得答案.
解:连接EG,
∵E是BC的中点,
∴BE=EC,
∵△ABE沿AE折叠后得到△AFE,
∴BE=EF,
∴EF=EC,
∵在矩形ABCD中,
∴∠C=90°,
∴∠EFG=∠B=90°,
∵在Rt△EGF和Rt△EGC中,
,
∴Rt△EGF≌Rt△EGC(HL),
∴FG=CG=2,
∵在矩形ABCD中,AB=CD=CG+DG=2+1=3,
∴AF=AB=3,
∴AG=AF+FG=3+2=5,
∴BC=AD===2.
故选:B.
练习册系列答案
相关题目