题目内容
(2012•温州)如图,经过原点的抛物线y=-x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.
(1)当m=3时,求点A的坐标及BC的长;
(2)当m>1时,连接CA,问m为何值时CA⊥CP?
(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.
(1)当m=3时,求点A的坐标及BC的长;
(2)当m>1时,连接CA,问m为何值时CA⊥CP?
(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.
分析:(1)把m=3,代入抛物线的解析式,令y=0解方程,得到的非0解即为和x轴交点的横坐标,再求出抛物线的对称轴方程,进而求出BC的长;
(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°,利用已知条件证明△ACH∽△PCB,根据相似的性质得到:
=
,再用含有m的代数式表示出BC,CH,BP,代入比例式即可求出m的值;
(3)存在,本题要分当m>1时,BC=2(m-1),PM=m,BP=m-1和当0<m<1时,BC=2(1-m),PM=m,BP=1-m,两种情况分别讨论,再求出满足题意的m值和相对应的点E坐标.
(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°,利用已知条件证明△ACH∽△PCB,根据相似的性质得到:
AH |
CH |
PB |
BC |
(3)存在,本题要分当m>1时,BC=2(m-1),PM=m,BP=m-1和当0<m<1时,BC=2(1-m),PM=m,BP=1-m,两种情况分别讨论,再求出满足题意的m值和相对应的点E坐标.
解答:解:(1)当m=3时,y=-x2+6x
令y=0得-x2+6x=0
∴x1=0,x2=6,
∴A(6,0)
当x=1时,y=5
∴B(1,5)
∵抛物线y=-x2+6x的对称轴为直线x=3
又∵B,C关于对称轴对称
∴BC=4.
(2)连接AC,过点C作CH⊥x轴于点H(如图1)
由已知得∠ACP=∠BCH=90°
∴∠ACH=∠PCB
又∵∠AHC=∠PBC=90°
∴△ACH∽△PCB,
∴
=
,
∵抛物线y=-x2+2mx的对称轴为直线x=m,其中m>1,
又∵B,C关于对称轴对称,
∴BC=2(m-1),
∵B(1,2m-1),P(1,m),
∴BP=m-1,
又∵A(2m,0),C(2m-1,2m-1),
∴H(2m-1,0),
∴AH=1,CH=2m-1,
∴
=
,
∴m=
.
(3)∵B,C不重合,∴m≠1,
(I)当m>1时,BC=2(m-1),PM=m,BP=m-1,
(i)若点E在x轴上(如图1),
∵∠CPE=90°,
∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP,
在△BPC和△MEP中,
,
∴△BPC≌△MEP,
∴BC=PM,
∴2(m-1)=m,
∴m=2,此时点E的坐标是(2,0);
(ii)若点E在y轴上(如图2),
过点P作PN⊥y轴于点N,
易证△BPC≌△NPE,
∴BP=NP=OM=1,
∴m-1=1,
∴m=2,
此时点E的坐标是(0,4);
(II)当0<m<1时,BC=2(1-m),PM=m,BP=1-m,
(i)若点E在x轴上(如图3),
易证△BPC≌△MEP,
∴BC=PM,
∴2(1-m)=m,
∴m=
,此时点E的坐标是(
,0);
(ii)若点E在y轴上(如图4),
过点P作PN⊥y轴于点N,
易证△BPC≌△NPE,
∴BP=NP=OM=1,
∴1-m=1,∴m=0(舍去),
综上所述,当m=2时,点E的坐标是(2,0)或(0,4),
当m=
时,点E的坐标是(
,0).
令y=0得-x2+6x=0
∴x1=0,x2=6,
∴A(6,0)
当x=1时,y=5
∴B(1,5)
∵抛物线y=-x2+6x的对称轴为直线x=3
又∵B,C关于对称轴对称
∴BC=4.
(2)连接AC,过点C作CH⊥x轴于点H(如图1)
由已知得∠ACP=∠BCH=90°
∴∠ACH=∠PCB
又∵∠AHC=∠PBC=90°
∴△ACH∽△PCB,
∴
AH |
CH |
PB |
BC |
∵抛物线y=-x2+2mx的对称轴为直线x=m,其中m>1,
又∵B,C关于对称轴对称,
∴BC=2(m-1),
∵B(1,2m-1),P(1,m),
∴BP=m-1,
又∵A(2m,0),C(2m-1,2m-1),
∴H(2m-1,0),
∴AH=1,CH=2m-1,
∴
1 |
2m-1 |
m-1 |
2(m-1) |
∴m=
3 |
2 |
(3)∵B,C不重合,∴m≠1,
(I)当m>1时,BC=2(m-1),PM=m,BP=m-1,
(i)若点E在x轴上(如图1),
∵∠CPE=90°,
∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP,
在△BPC和△MEP中,
|
∴△BPC≌△MEP,
∴BC=PM,
∴2(m-1)=m,
∴m=2,此时点E的坐标是(2,0);
(ii)若点E在y轴上(如图2),
过点P作PN⊥y轴于点N,
易证△BPC≌△NPE,
∴BP=NP=OM=1,
∴m-1=1,
∴m=2,
此时点E的坐标是(0,4);
(II)当0<m<1时,BC=2(1-m),PM=m,BP=1-m,
(i)若点E在x轴上(如图3),
易证△BPC≌△MEP,
∴BC=PM,
∴2(1-m)=m,
∴m=
2 |
3 |
4 |
3 |
(ii)若点E在y轴上(如图4),
过点P作PN⊥y轴于点N,
易证△BPC≌△NPE,
∴BP=NP=OM=1,
∴1-m=1,∴m=0(舍去),
综上所述,当m=2时,点E的坐标是(2,0)或(0,4),
当m=
2 |
3 |
4 |
3 |
点评:此题主要考查了二次函数解析式的确定、轴对称的性质、相似三角形的判定和相似三角形的性质以及全等三角形的性质和全等三角形的判定、需注意的是(3)题在不确E点的情况下需要分类讨论,以免漏解.题目的综合性强,难度也很大,有利于提高学生的综合解题能力,是一道不错的题目.
练习册系列答案
相关题目