题目内容
【题目】如图,直线l:y=﹣x+1与x轴,y轴分别交于A,B两点,点P,Q是直线l上的两个动点,且点P在第二象限,点Q在第四象限,∠POQ=135°.
(1)求△AOB的周长;
(2)设AQ=t>0,试用含t的代数式表示点P的坐标;
(3)当动点P,Q在直线l上运动到使得△AOQ与△BPO的周长相等时,记tan∠AOQ=m,若过点A的二次函数y=ax2+bx+c同时满足以下两个条件:
①6a+3b+2c=0;
②当m≤x≤m+2时,函数y的最大值等于,求二次项系数a的值.
【答案】(1)△AOB周长为2+.(2)P(﹣,1+).(3)a的值为或﹣2﹣2.
【解析】
试题分析:(1)先求出A、B坐标,再求出OB、OA、AB即可解决问题.(2)由△PBO∽△OAQ,得=,求出PB,再根据等腰直角三角形性质可以求得点P坐标.(3)先求出m的值,分①a>0,②a<0,两种情形,利用二次函数性质分别求解即可.
试题解析:(1)在函数y=﹣x+1中,令x=0,得y=1,
∴B(0,1),
令y=0,得x=1,
∴A(1,0),
则OA=OB=1,AB=,
∴△AOB周长为1+1+=2+.
(2)∵OA=OB,
∴∠ABO=∠BAO=45°,
∴∠PBO=∠QAO=135°,
设∠POB=x,则∠OPB=∠AOQ=135°﹣x﹣90°=45°﹣x,
∴△PBO∽△OAQ,
∴=,
∴PB==,
过点P作PH⊥OB于H点,
则△PHB为等腰直角三角形,
∵PB=,
∴PH=HB=,
∴P(﹣,1+).
(3)由(2)可知△PBO∽△OAQ,若它们的周长相等,则相似比为1,即全等,
∴PB=AQ,
∴=t,
∵t>0,
∴t=1,
同理可得Q(1+,﹣),
∴m==﹣1,
∵抛物线经过点A,
∴a+b+c=0,
又∵6a+3b+2c=0,
∴b=﹣4a,c=3a,
对称轴x=2,取值范围﹣1≤x+1,
①若a>0,则开口向上,
由题意x=﹣1时取得最大值=2+2,
即(﹣1)2a+(﹣1)b+c=2+2,
解得a=.
②若a<0,则开口向下,
由题意x=2时取得最大值2+2,
即4a+2b+c=2+2,
解得a=﹣2﹣2.
综上所述所求a的值为或﹣2﹣2.