题目内容
【题目】如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为.
其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
①连接CD(如图1)。
∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB。
∵AE=CF,∴△ADE≌△CDF(SAS)。
∴ED=DF,∠CDF=∠EDA。
∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°。
∴△DFE是等腰直角三角形。
故此结论正确。
②当E、F分别为AC、BC中点时,∵由三角形中位线定理,DE平行且等于BC。
∴四边形CEDF是平行四边形。
又∵E、F分别为AC、BC中点,AC=BC,∴四边形CEDF是菱形。
又∵∠C=90°,∴四边形CEDF是正方形。
故此结论错误。
③如图2,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,
由②,知四边形CMDN是正方形,∴DM=DN。
由①,知△DFE是等腰直角三角形,∴DE=DF。
∴Rt△ADE≌Rt△CDF(HL)。
∴由割补法可知四边形CEDF的面积等于正方形CMDN面积。
∴四边形CEDF的面积不随点E位置的改变而发生变化。
故此结论错误。
④由①,△DEF是等腰直角三角形,∴FE=DF。
当DF与BC垂直,即DF最小时, EF取最小值2。此时点C到线段EF的最大距离为。
故此结论正确。
故正确的有2个:①④。故选B。
请在此输入详解!
【题目】某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个随机抽取了部分学生的听写结果,绘制成如下的图表.
组别 | 正确字数x | 人数 |
A | 10 | |
B | 15 | |
C | 25 | |
D | m | |
E | n |
根据以上信息完成下列问题:
统计表中的______,______,并补全条形统计图;
扇形统计图中“C组”所对应的圆心角的度数是______;
已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.
【题目】目前节能灯在各城市已基本普及,今年某市面向县级及农村地区推广,为响应号召,朝阳灯饰商场用了元购进甲型和乙型两种节能灯.这两种型号节能灯的进价、售价如表:
进价(元/只) | 售价(元/只) | |
甲型 | ||
乙型 |
特别说明:毛利润=售价-进价;
(1)朝阳灯饰商场销售甲型节能灯一只毛利润是______元.
(2)如果朝阳灯饰商场购买甲,乙两种节能灯共只,其中买了甲型节能灯多少只?
(3)现在朝阳灯饰商场购进甲型节能灯只,请你帮助商场计算一下销售完节能灯时所获的毛利润是多少?