题目内容
【题目】如图1,四边形的对角线相交于点,,,,.
(1)填空:与的数量关系为 ;
(2)求的值;
(3)将沿翻折,得到(如图2),连接,与相交于点.若,求的长.
【答案】(1)∠BAD+∠ACB=180°;(2);(3)1.
【解析】
试题分析:(1)在△ABD中,根据三角形的内角和定理即可得出结论:∠BAD+∠ACB=180°;
(2)如图1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出,可得,可得4y2+2xy﹣x2=0,即,求出的值即可解决问题;
(3)如图2中,作DE∥AB交AC于E.想办法证明△PA′D∽△PBC,可得,可得,即,由此即可解决问题;
试题解析:(1)如图1中,
在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,∠ABD+∠ADB=∠ACB,
∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.
(2)如图1中,作DE∥AB交AC于E.
∴∠DEA=∠BAE,∠OBA=∠ODE,
∵OB=OD,∴△OAB≌△OED,
∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,
∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,
∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,
∴,∴,
∴4y2+2xy﹣x2=0,∴,
∴(负根已经舍弃),∴.
(3)如图2中,作DE∥AB交AC于E.
由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,
∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,
∵△EAD∽△ACB,∴∠DAE=∠ABC=∠DA′C,
∴∠DA′C+∠A′CB=180°,∴A′D∥BC,
∴△PA′D∽△PBC,
∴,
∴,即
∴PC=1.