题目内容
先观察下面的解题过程,然后解答问题:题目:化简(2+1)(22+1)(24+1).
解:(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=28-1.
问题:化简(3+1)(32+1)(34+1)(38+1)…(364+1).
分析:根据题意,整式的第一个因式可以根据平方差公式进行化简,然后再和后面的因式进行运算.
解答:解:原式=
(3-1)(3+1)(32+1)(34+1)(38+1)(364+1),(4分)
=
(32-1)(32+1)(34+1)(38+1)(364+1),
=
(34-1)(34+1)(38+1)(364+1),
=
(38-1)(38+1)(364+1),
=
(364-1)(364+1),(8分)
=
(3128-1).(10分)
1 |
2 |
=
1 |
2 |
=
1 |
2 |
=
1 |
2 |
=
1 |
2 |
=
1 |
2 |
点评:本题主要考查了平方差公式,关键在于把(3+1)化简为(3-1)(3+1)的形式,

练习册系列答案
相关题目