题目内容
【题目】晓东在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.
解:原方程可变形,得[(x+2)﹣2][(x+2)+2]=6.(x+2)2﹣22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得,.我们称晓东这种解法为“平均数法”.
(1)下面是晓东用“平均数法”解方程(x+2)(x+6)=5时写的解题过程.
解:原方程可变形,得
[(x+□)﹣〇][(x+□)+〇]=5.
(x+□)2﹣〇2=5,
(x+□)2=5+〇2.
直接开平方并整理,得x1=☆,x2=¤.
上述过程中的“□”,“〇”,“☆”,“¤”表示的数分别为 , , , .
(2)请用“平均数法”解方程:(x﹣3)(x+1)=5.
【答案】(1)4,2,-1,-7;(2)
【解析】
(1)根据阅读材料中的信息,结合方程确定出上述过程中的“□”,“”,“☆”,“¤”表示的数即可;(2)利用“平均数法”解方程即可.
(1)4,2,-1,-7(最后两空可交换顺序);
故答案为:4,2,-1,-7;
(2)(x-3)(x+1)=5;
原方程可变形,得[(x-1)-2][(x-1)+2]=5,
整理得:(x-1)2-22=5,
(x-1)2=5+22,即(x-1)2=9,
直接开平方并整理,得x1=4,x2=-2.
练习册系列答案
相关题目