题目内容

【题目】如图,在等腰Rt△ABC中,AC=BC=2 ,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是( )

A. π
B.π
C.2
D.2

【答案】B
【解析】解:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,

∵在等腰Rt△ABC中,AC=BC=2

∴AB= BC=4,

∴OC= AB=2,OP= AB=2,

∵M为PC的中点,

∴OM⊥PC,

∴∠CMO=90°,

∴点M在以OC为直径的圆上,

点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF为正方形,EF=OC=2,

∴M点的路径为以EF为直径的半圆,

∴点M运动的路径长= 2π1=π.

所以答案是:B.

【考点精析】本题主要考查了等腰三角形的性质和圆周角定理的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角);顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网