题目内容

已知a1+a2=1,a2+a3=2,a3+a4=3,…,a99+a100=99,a100+a1=100,那么a1+a2+a3+…a100=        
2525
此题需把a1+a2+a3+…a100变形为(a1+a2+a2+a3+a3+a4+,…,a99+a100+a100+a1,再把a1+a2=1,a2+a3=2,a3+a4=3,…,a99+a100=99,a100+a1=100代入即可.
解:∵a1+a2=1,a2+a3=2,a3+a4=3,…,a99+a100=99,a100+a1=100,
∴a1+a2+a3+…a100=(a1+a2+a2+a3+a3+a4+,…,a99+a100+a100+a1)=(1+2+3+…+100)=×5050=2525.
故填:2525.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网