题目内容
【题目】都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如果家长代表与教师的人数之比为2:1.
(1)参加社会实践活动的老师、家长代表与学生各有多少人?
(2)由于各种原因,二等座单程火车票只能买x张(x<参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y与x之间的函数关系式.
(3)在(2)的方案下,请求出当x=30时,购买单程火车票的总费用.
【答案】(1)参加社会实践的老师有5人,家长有10人,学生有50人;(2);(3)4675.
【解析】
试题分析:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,根据题意得到方程组,求出方程组的解即可;
(2)有两种情况:①当50≤x<65时,学生都买学生票共50张,(x﹣50)名成年人买二等座火车票,(65﹣x)名成年人买一等座火车票,得到解析式:y=60×0.75×50+60(x﹣50)+95(65﹣x);②当0<x<50时,一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(65﹣x)张,得到解析式是y=﹣50x+6175;
(3)由(2)小题知:当x=30时,y=﹣50x+6175,代入求解即可求得答案.
试题解析:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,根据题意得:,解得:,则2m=10.
答:参加社会实践的老师有5人,家长有10人,学生有50人.
(2)由(1)知所有参与人员总共有65人,其中学生有50人,①当50≤x<65时,最经济的购票方案为:
学生都买学生票共50张,(x﹣50)名成年人买二等座火车票,(65﹣x)名成年人买一等座火车票,∴火车票的总费用(单程)y与x之间的函数关系式为:y=60×0.75×50+60(x﹣50)+95(65﹣x),即y=﹣35x+5425(50≤x<65);
②当0<x<50时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(65﹣x)张,∴火车票的总费用(单程)y与x之间的函数关系式为:y=60×0.75x+95(65﹣x),即y=﹣50x+6175(0<x<50),∴购买单程火车票的总费用y与x之间的函数关系式为:.
(3)∵x=30<50,∴y=﹣50x+6175=﹣50×30+6185=4675.
答:当x=30时,购买单程火车票的总费用为4675元.