题目内容
(2012•丹东)如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于( )
分析:先求出菱形的边长AB,再根据菱形的对角线互相平分判断出OE是△ABD的中位线,然后根据三角形的中位线等于第三边的一半解答.
解答:解:∵菱形ABCD的周长为24cm,
∴边长AB=24÷4=6cm,
∵对角线AC、BD相交于O点,
∴BO=DO,
又∵E是AD的中点,
∴OE是△ABD的中位线,
∴OE=
AB=
×6=3cm.
故选A.
∴边长AB=24÷4=6cm,
∵对角线AC、BD相交于O点,
∴BO=DO,
又∵E是AD的中点,
∴OE是△ABD的中位线,
∴OE=
1 |
2 |
1 |
2 |
故选A.
点评:本题考查了菱形的对角线互相平分的性质,三角形的中位线定理,是基础题,求出OE等于菱形边长的一半是解题的关键.
练习册系列答案
相关题目