题目内容
计算:
(1)
(2)
矩形ABCD在坐标系中如图所示放置.已知点B、C在x轴上,点A在第二象限,D(2,4)BC=6,反比例函数 y=(x<0)的图象经过点A.则k=( )
A. 8 B. -8 C. 16 D. -16
早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.
(1)求小明步行速度(单位:米/分)是多少;
(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?
已知2m=a,4n=b,m,n为正整数,则23m+4n=_____.
如图,在平面直角坐标系中,已知A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),把△ABC平移之后得到△A′B′C′,并且C的对应点C′的坐标为(4,1).
(1)分别写出A′、B′两点的坐标;
(2)作出△ABC平移之后的图形△A′B′C′;
(3)求△A′B′C′的面积.
一个正数的两个平方根分别为2m-1和m+7,则这个正数是____________.
下列命题:
①无限小数就是无理数 ②三条直线a、b、c,若a⊥b,b⊥c,则a∥c
③相等的角是对顶角 ④经过一点有且只有一条直线与已知直线垂直
其中,真命题的个数是( )
A. 0个 B. 1个 C. 2个 D. 3个
如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是__________;
为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有 人,在扇形统计图中,m的值是 ;
(2)将条形统计图补充完整;
(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.