题目内容
下列地方银行的标志中,既不是轴对称图形,也不是中心对称图形的是 ( )
A. B. C. D.
如图,平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.
(1)求证:四边形CMAN是平行四边形.
(2)已知DE=2,FN=1,求BN的长.
如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′= _______.
若扇形的半径为3cm,扇形的面积为2πcm2,则该扇形的圆心角为_________°.
如图,AB为直径,AB=4,C、D为圆上两个动点,N为CD中点,CM⊥AB于M,当C、D在圆上运动时保持∠CMN=30°,则CD的长( )
A. 随C、D的运动位置而变化,且最大值为4 B. 随C、D的运动位置而变化,且最小值为2
C. 随C、D的运动位置长度保持不变,等于2 D. 随C、D的运动位置而变化,没有最值
在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5cm,求AE的长。
如图正方形ABCD中,点E在边DC上,DE=4,EC=2,把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为_______.
如图,二次函数y=+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).
(1)求二次函数的解析式;
(2)求函数图象的顶点坐标及D点的坐标;
(3)该二次函数的对称轴交x轴于C点,连接BC,并延长BC交抛物线于E点,连接BD、DE,求△BDE的面积.
如图,Rt△ABC中,∠C=90°,AB=5,AC=3,在边AB上取一点D,作DE⊥AB交BC于点E.现将△BDE沿DE折叠,使点B落在线段DA上,对应点记为B1;BD的中点F的对应点记为F1.若△EFB∽△AF1E,则B1D=( )