(1)证明:∵在△ABC中,∠BAC=120°,AB=AC,
∴∠B=∠C=30°.
∵∠B+∠BPE+∠BEP=180°,
∴∠BPE+∠BEP=150°,
又∠EPF=30°,且∠BPE+∠EPF+∠CPF=180°,
∴∠BPE+∠CPF=150°,
∴∠BEP=∠CPF,
∴△BPE∽△CFP(两角对应相等的两个三角形相似).
(2)解:①△BPE∽△CFP;
②△BPE与△PFE相似.
下面证明结论:
同(1),可证△BPE∽△CFP,得

=

,而CP=BP,因此

.
又因为∠EBP=∠EPF,所以△BPE∽△PFE(两边对应成比例且夹角相等的两个三角形相似).
③由②得△BPE∽△PFE,所以∠BEP=∠PEF.

分别过点P作PM⊥BE,PN⊥EF,垂足分别为M、N,则PM=PN.
连AP,在Rt△ABP中,由∠B=30°,AB=8,可得AP=4.
所以PM=2

,所以PN=2

,
所以s=

PN×EF=

m.
分析:(1)找出△BPE与△CFP的对应角,其中∠BPE+∠CPF=150°,∠CPF+∠CFP=150°,得出∠BPE=∠CFP,从而解决问题;
(2)①小题同前可证,②小题可通过对应边成比例证明,③小题求出△BPE中BE上的高,求出△PEF中EF上的高,得出关系式.
点评:这是一道操作探究题,它改变了多年来扬州市最后一道压轴题以二次函数为主线的呈现方式.它以每位学生都有的30°三角板在图形上的运动为背景,既考查了学生图形旋转变换的思想,静中思动,动中求静的思维方法,又考查了学生动手实践、自主探究的能力.
问题的设置以问题串的形式呈现,层层推进,第1问入手容易,第2问深入困难,有一定的区分度,使不同层次的学生有不同的收获.
同时通过本题的解答,一使同学们领悟到学习数学的方法,二是提醒教师学生在平时的教学中要注意变式练习.
本题的第1问不难,用两角相等即可证得相似,第2问中的①由第1问类比即得,②要用到①中对应边成比例代换后方可证得,③一般学生都能想到作高,却想不到求这条高要用到角平分线、解直角三角形等知识.
实际上三角板运动到特殊位置还有一些结论,感兴趣的学生不妨继续研究.
要关注几何图形在运动状态下几何关系的不变性哦!