题目内容

【题目】如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:

(1)仔细观察,在图2中有 个以线段AC为边的“8字形”;

(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数.

(3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠D、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;

(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为

【答案】360°

【解析】

试题分析:(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;

(2)根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入计算即可;

(3)与(2)的证明方法一样得到∠P=(2∠C+∠B).

(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.

解:(1)在图2中有3个以线段AC为边的“8字形”,

故答案为3;

(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,

∴∠CAP=∠BAP,∠BDP=∠CDP,

∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,

∴∠C﹣∠P=∠P﹣∠B,

即∠P=(∠C+∠B),

∵∠C=100°,∠B=96°

∴∠P=(100°+96°)=98°;

(3)∠P=(β+2α);

理由:∵∠CAP=∠CAB,∠CDP=∠CDB,

∴∠BAP=∠BAC,∠BDP=∠BDC,

∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,

∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,

∴2(∠C﹣∠P)=∠P﹣∠B,

∴∠P=(∠B+2∠C),

∵∠C=α,∠B=β,

∴∠P=(β+2α);

(4)∵∠B+∠A=∠1,∠C+∠D=∠2,

∴∠A+∠B+∠C+∠D=∠1+∠2,

∵∠1+∠2+∠F+∠E=360°,

∴∠A+∠B+∠C+∠D+∠E+∠F=360°.

故答案为:360°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网