题目内容
【题目】比1小2的数是( )
A.﹣1B.﹣2C.﹣3D.1
【答案】A
【解析】
求比1小2的数就是求1与2的差.
解:1﹣2=﹣1.
故选:A.
【题目】已知点A(﹣2,y1),B(1,y2)在直线y=kx+b上,且直线经过第一、二、四象限,则y1_____y2.(用“>”,“<”或“=”连接)
【题目】已知如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点BD是对角线,AG∥DB,交CB的延长线于G,连接GF,若AD⊥BD.下列结论:①DE∥BF;②四边形BEDF是菱形;③FG⊥AB;④S△BFG=.其中正确的是( )
A. ①②③④ B. ①② C. ①③ D. ①②④
【题目】数75000000用科学记数法表示为( )
A.7.5×107B.7.5×106C.75x106D.75×105
【题目】如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.
(1)请在图中找出与∠AOC相等的角,并说明理由;
(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.
【题目】如图,菱形ABCD中,E是AD的中点,EF⊥AC交CB的延长线于点F.
(1)DE和BF相等吗?请说明理由.
(2)连接AF、BE,四边形AFBE是平行四边形吗?说明理由.
【题目】如图,在边长为4的菱形ABCD中,BD=4,E、F分别是AD、CD上的动点(包含端点),且AE+CF=4,连接BE、EF、FB.
(1)试探究BE与BF的数量关系,并证明你的结论;
(2)求EF的最大值与最小值.
【题目】如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).
(1)写出点A、B的坐标:
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,画出△A′B′C′;
(3)若AB边上有一点M(a,b),平移后对应的点M′的坐标为:
(4)求△ABC的面积.
【题目】用四含五入法对0.03049取近似值,精确到0.001的结果是( )
A. 0.0305B. 0.04C. 0.030D. 0.031