题目内容
如图,四个完全相同的小球上分别写有:0,,﹣5,π四个实数,把它们全部装入一个布袋里,从布袋里任意摸出1个球,球上的数是无理数的概率为_____.
平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x轴有两个交点.
(1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;
(2)过点P(0,m﹣1)作直线1⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;
(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.
我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数的图象上有一些整点,请写出其中一个整点的坐标______.
一个不透明的口袋里装有分别标有汉字“幸”、“福”、“聊”、“城”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,球上的汉字刚好是“福”的概率为多少?
(2)小颖从中任取一球,记下汉字后放回袋中,然后再从中任取一球,求小颖取出的两个球上汉字恰能组成“幸福”或“聊城”的概率.
若一元二次方程x2﹣3x+1=0的两根为x1和x2, 则x1+x2=________.
在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是【 】
振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8.5,﹣6,+7.5,﹣6,+8,﹣7.
(1)求振子停止时所在位置的方向及距A点有多远?
(2)如果振子最后回到出发点A且振子每毫米需时间0.02秒,则共用时间多少秒?
下列运用等式的性质,变形正确的是( )
A. 若x=y,则x﹣5=y+5 B. 若a=b,则ac=bc
C. 若,则2a=3b D. 若x=y,则
在平面直角坐标系中,点A1 (1,1),A2 (2,4),A3 (3,9),A4 (4,16),…,用你发现的规律确定点A10的坐标是__________.