题目内容

【题目】如图,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,FH平分∠EFG.
(1)说明:DC∥AB;
(2)求∠PFH的度数.

【答案】
(1)解:∵DC∥FP,

∴∠3=∠2,

又∵∠1=∠2,

∴∠3=∠1,

∴DC∥AB;


(2)解:∵DC∥FP,DC∥AB,∠DEF=28°,

∴∠DEF=∠EFP=28°,AB∥FP,

又∵∠AGF=80°,

∴∠AGF=∠GFP=80°,

∴∠GFE=∠GFP+∠EFP=80°+28°=108°,

又∵FH平分∠EFG,

∴∠GFH= ∠GFE=54°,

∴∠PFH=∠GFP﹣∠GFH=80°﹣54°=26°


【解析】(1)由DC∥FP知∠3=∠2=∠1,可得;(2)由(1)利用平行线的判定得到AB∥PF∥CD,根据平行线的性质得到∠AGF=∠GFP,∠DEF=∠EFP,然后利用已知条件即可求出∠PFH的度数.
【考点精析】认真审题,首先需要了解平行线的判定与性质(由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网