题目内容
【题目】如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.
(1)求证:△DEC≌△EDA;(2)求DF的值;(3)在线段AB上找一点P,连结FP使FP⊥AC,连结PC,试判定四边形APCF的形状,并说明理由,直接写出此时线段PF的大小
【答案】(1)、证明过程见解析;(2)、DF=;(3)、PF=
【解析】
试题分析:(1)、根据矩形的可得AD=BC,AB=CD,根据折叠图形可得BC=EC,AE=AB,则可得AD=CE,AE=CD,从而得到三角形全等;(2)、设DF=x,则AF=CF=4-x,根据Rt△ADF的勾股定理求出x的值;(3)、根据菱形的性质进行求解.
试题解析:(1)、∵矩形ABCD
∴AD=BC,AB=CD,AB∥CD
∴∠ACD=∠CAB
∵△AEC由△ABC翻折得到
∴AB=AE,BC=EC, ∠CAE=∠CAB
∴AD=CE,DC=EA,∠ACD=∠CAE,
在△ADE与△CED中
∴△DEC≌△EDA(SSS);
(2)、如图,∵∠ACD=∠CAE,
∴AF=CF,
设DF=x,则AF=CF=4﹣x,
在RT△ADF中,AD2+DF2=AF2,
即32+x2=(4﹣x)2,
解得;x=,
即DF=.
(3)、四边形APCF为菱形 设AC、FP相较于点O
∵FP⊥AC
∴∠AOF=∠AOP
又∵∠CAE=∠CAB,
∴∠APF=∠AFP
∴AF=AP
∴FC=AP
又∵AB∥CD
∴四边形APCF是平行四边形
又∵FP⊥AC
∴四边形APCF为菱形
PF=
【题目】某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )
劳动时间(小时) | 3 | 3.5 | 4 | 4.5 |
人数 | 1 | 1 | 2 | 1 |
A.中位数是4,平均数是3.75
B.众数是4,平均数是3.8
C.众数是2,平均数是3.75
D.众数是2,平均数是3.8