题目内容
【题目】如图在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于E交AB的延长线于点F,
(1)求证:EF是⊙O的切线;
(2)若AE=6,FB=4,求⊙O的面积.
【答案】(1)证明见解析(2)16π
【解析】试题分析:(1)连结AD、OD,如图,根据圆周角定理由AB为⊙O的直径得到∠ADB=90°,即AD⊥BC,再根据等腰三角形的性质得BD=CD,则OD为△ABC的中位线,所以OD∥AC,加上EF⊥AC,于是OD⊥EF,然后根据切线的判定定理得EF是⊙O的切线;(2)设⊙O的半径为R,利用OD∥AE得到△FOD∽△FAE,根据相似比可得
=,解得R=4,然后利用圆的面积公式求解.
试题解析:(1)连结AD、OD,如图,
∵AB为⊙O的直径,
∴∠ADB=90°,即AD⊥BC,
∵AB=AC,
∴BD=CD,
而OA=OB,
∴OD为△ABC的中位线,
∴OD∥AC,
∵EF⊥AC,
∴OD⊥EF,
∴EF是⊙O的切线;
(2)设⊙O的半径为R,
∵OD∥AE,
∴△FOD∽△FAE,
∴=,即=,
解得R=4,
∴⊙O的面积=π42=16π.
练习册系列答案
相关题目