题目内容

△ABC∽△A′B′C′,∠A=45°,∠B=100°,则∠C′等于


  1. A.
    45°
  2. B.
    100°
  3. C.
    55°
  4. D.
    35°
D
分析:根据相似三角形的性质可证∠A=∠A′=45°,∠B=∠B′=100°,所以∠C′=35°.
解答:△ABC∽△A′B′C′,
则∠A=∠A′=45°,
∠B=∠B′=100°,
根据三角形的内角和定理得到∠C′=180°-∠A′-∠B′=180°-45°-100°=35°.
故选D.
点评:相似三角形的对应角相等是本题考查的重点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网