题目内容

【题目】张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+ (x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是 ,矩形的周长是2(x+ );当矩形成为正方形时,就有x= (x>0),解得x=1,这时矩形的周长2(x+ )=4最小,因此x+ (x>0)的最小值是2.模仿张华的推导,你求得式子 (x>0)的最小值是(
A.2
B.1
C.6
D.10

【答案】C
【解析】解:∵x>0, ∴在原式中分母分子同除以x,
=x+
在面积是9的矩形中设矩形的一边长为x,则另一边长是
矩形的周长是2(x+ );
当矩形成为正方形时,就有x= ,(x>0),
解得x=3,
这时矩形的周长2(x+ )=12最小,
因此x+ (x>0)的最小值是6.
故选:C
【考点精析】利用分式的混合运算和完全平方公式对题目进行判断即可得到答案,需要熟知运算的顺序:第一级运算是加法和减法;第二级运算是乘法和除法;第三级运算是乘方.如果一个式子里含有几级运算,那么先做第三级运算,再作第二级运算,最后再做第一级运算;如果有括号先做括号里面的运算.如顺口溜:"先三后二再做一,有了括号先做里."当有多层括号时,先算括号内的运算,从里向外{[(?)]};首平方又末平方,二倍首末在中央.和的平方加再加,先减后加差平方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网