题目内容
如图,数轴上表示2, 的对应点分别为C、B,点C是AB的中点,则点A表示的数是______.
下列运算中,计算正确的是( )
A. (a2b)3=a5b3 B. (3a2)3=27a6 C. x6÷x2=x3 D. (a+b)2=a2+b2
如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB'E,AB'与CD边交于点F,则B'F的长度为_______
如图:已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于F.
(1)如图1,若∠E=80°,求∠BFD的度数.
(2)如图2:若写出∠M和∠E之间的数量关系并证明你的结论.
(3)若设∠E=m°,直接用含有n、m°的代数式写出∠M= (不写过程)
计算:
如图,A.B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b的值为( )
A. 2 B. 3 C. 4 D. 5
为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
下列几何体中,主视图和俯视图都为矩形的是( )
A. B. C. D.
一只箱子里有红球和白球各若干个,现从中拿出与白球个数一样多的红球,结果随机摸出一个球是红球的概率为,则箱子里原有红球个数与白球个数的比是_____.