题目内容
A、B两地相距49千米,某人步行从A地出发,分三段以不同的速度走完全程,共用10小时.已知第一段,第二段,第三段的速度分别是6千米/时,4千米/时,5千米/时,第三段路程为15千米,求第一段和第二段的路程.
答案:第一段路程长为18千米,第二段路程长为16千米.
提示:思路一:
三段路程之和为49千米,而路程等于时间与速度的乘积.
可设第一段路程长为 x千米,则第二段路程为(49-x-15)千米,
用时间的相等关系列方程,得
,
解得 x=18(千米);
由此可知,第一段路程长为18千米,第二段路程长为16千米.
思路二:
又可设走第一段所用时间为t小时,
由于第三段所用时间为 (小时),
则第二段所用时间为(10-3-t)小时,
于是可用路程的相等关系列方程:
6t+(10-t-)×4+15=49,
解得 t=3,
由此可知,第一段路程长为18千米,第二段路程长为16千米.
当x=4时,代数式 A=ax2-4x-6a的值是-1,那么当x=-5 时,A的值是多少?
提示:关键在于利用一元一次方程求出a的值.
据题意,有关于a的方程
16a-16-6a=-1,
解得a=1.5;
所以关于x的代数为
A=1.5x2-4x-9,
于是,当x=-5时,有
A=1.5×(-5)2-4×(-5)-9
=37.5+20-9
=48.5.
练习册系列答案
相关题目