题目内容
(本小题满分12分)已知:直线与轴交于A,与轴交于D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为 (1,0).
(1)求抛物线的解析式;
(2)动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标.
(3)在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标.
解:(1)将A(0,1)、B(1,0)坐标代入得
解得
∴抛物线的解折式为.
(2)设点E的横坐标为m,则它的纵坐标为
则E(,).
又∵点E在直线上,
∴.
解得(舍去),.
∴E的坐标为(4,3).
(Ⅰ)当A为直角顶点时
过A作交轴于点,设.
易知D点坐标为(,0).
由得
即,∴.
∴.
(Ⅱ)同理,当为直角顶点时,点坐标为(,0).)
(Ⅲ)当P为直角顶点时,过E作轴于,设.
由,得.
.
由得.
解得,.
∴此时的点的坐标为(1,0)或(3,0).
综上所述,满足条件的点P的坐标为(,0)或(1,0)或(3,0)或(,0)
(3)抛物线的对称轴为.
∵B、C关于对称,
∴.
要使最大,即是使最大.
由三角形两边之差小于第三边得,当A、B、M在同一直线上时的值最大.
易知直线AB的解折式为.
∴由 得 ∴M(,-).
解析:略
练习册系列答案
相关题目