题目内容
【题目】(本题14分)如图(1),在△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.
(1)求证:△ABC≌△EDC;
(2)如图(2),若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.
①求∠DHF的度数;
②若EB平分∠DEC,试说明:BE平分∠ABC.
【答案】(1)略 (2)①∠DHF=60° ② 略
【解析】(1)∵CA平分∠BCE,
∴∠ACB=∠ACE.
在△ABC和△EDC中
∵BC=CD,∠ACB=∠ACE,AC=CE
∴△ABC≌△EDC(SAS)
(2)①在△BCF和△DCG中
∵BC=DC, ∠BCD=∠DCE,CF=CG,
∴△BCF≌△DCG(SAS),
∴∠CBF=∠CDG.
∵∠CBF+∠BCF=∠CDG+∠DHF
∴∠BCF=∠DHF=60°.
②∵EB平分∠DEC,
∴∠DEH=∠BEC.
∵∠DHF=60°,
∴∠HDE=60°-∠DEH.
∵∠BCE=60°+60°=120°,
∴∠CBE=180°-120°-∠BEC=60°-∠BEC.
∴∠HDE=∠CBE. ∠A=∠DEG.
∵△ABC≌△EDC, △BCF≌△DCG(已证)
∴∠∠BFC=∠DGC,
∵∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,
∴∠ABF=∠HDE,
∴∠ABF=∠CBE,
∴BE平分∠ABC.
练习册系列答案
相关题目