题目内容
【题目】小明同学在查阅大数学家高斯的资料时,知道了高斯如何求1+2+3+…+100.小明于是对从1开始连续奇数的和进行了研究,发现如下式子:
第1个等式: ;第2个等式: ;第3个等式:
探索以上等式的规律,解决下列问题:
(1) ;
(2)完成第个等式的填空: ;
(3)利用上述结论,计算51+53+55+…+109 .
【答案】(1)25;(2)2n-1;(3)2400.
【解析】
(1)根据题目中的规律,写出答案即可.
(2)根据题目中的规律,反推答案即可.
(3)利用规律通式,代入计算即可.
(1) 由题意规律可以得,连续奇数的和为中间相的平方,
所以.
(2)设最后一项为x,由题意可推出: ,x=2n-1.
(3)根据上述结论, 51+53+55+…+109=(1+3+5+···+109)-( 1+3+5+···+49)=552-252=2400.
练习册系列答案
相关题目
【题目】自行车厂某周计划生产2100辆电动车,平均每天生产电动车300辆.由于各种原因,实际每天的生产量与计划每天的生产量相比有出入,下表是该周的实际生产情况(超产记为正、减产记为负,单位:辆):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
减增 |
(1)该厂星期一生产电动车________辆;
(2)生产量最多的一天比生产量最少的一天多生产电动车________辆;
(3)该厂实行记件工资制,每生产一辆车可得60元,那么该厂工人这一周的工资总额是多少元?