题目内容
若,则的值为( )
A. B. C. 0 D. 4
在?ABCD中,∠B+∠D=260°,那么∠A的度数是( )
A. 130° B. 100° C. 50° D. 80°
分解因式:2a2﹣4a+2= .
设,,,…,是n个互不相同的正整数,且+++…+=2017,则n的最大值是______.
如图(1),点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P,Q出发t秒时, △BPQ的面积为y(cm2),已知y与t的函数关系的图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AB=6cm;②直线NH的解析式为y=-5t+90;③△QBP可能与△ABE相似;④当t=13秒时,∠PBQ=30°.其中正确的结论个数是( )
A. 1 B. 2 C. 3 D. 4
如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4),
(1)请在图中,画出△ABC绕着点O逆时针旋转90°后得到的△A1B1C1,则∠A1C1B1的正切值= .
(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴左侧,画出△A2B2C2,若点P(m,n)是△ABC上的任意一点,则变换后的对应点P′的坐标是 .
如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.
已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF.
(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;
①请直接写出CF,BC,CD三条线段之间的关系;
②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.
已知a,b,c为△ABC的三边长,关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0有两个相等的实数根,则△ABC为( )
A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形