ÌâÄ¿ÄÚÈÝ
Èçͼ£¬Ö±ÏßOAÓë·´±ÈÀýº¯ÊýµÄͼÏó½»ÓÚµãA£¨3£¬3£©£¬ÏòÏÂƽÒÆÖ±ÏßOA£¬Óë·´±ÈÀýº¯ÊýµÄͼÏó½»ÓÚµãB£¨6£¬m£©ÓëyÖá½»ÓÚµãC£¬£¨1£©ÇóÖ±ÏßBCµÄ½âÎöʽ£»
£¨2£©Çó¾¹ýA¡¢B¡¢CÈýµãµÄ¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨3£©Éè¾¹ýA¡¢B¡¢CÈýµãµÄ¶þ´Îº¯ÊýͼÏóµÄ¶¥µãΪD£¬¶Ô³ÆÖáÓëxÖáµÄ½»µãΪE£®
ÎÊ£ºÔÚ¶þ´Îº¯ÊýµÄ¶Ô³ÆÖáÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹ÒÔO¡¢E¡¢PΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷BCDÏàËÆ£¿Èô´æÔÚ£¬ÇëÇó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾ÝµãAµÄ×ø±ê£¬¼´¿ÉÈ·¶¨Ö±ÏßOAÒÔ¼°·´±ÈÀýº¯ÊýµÄ½âÎöʽ£¬¸ù¾ÝËùµÃ·´±ÈÀýº¯Êý½âÎöʽ¼´¿ÉÈ·¶¨µãBµÄ×ø±ê£¬¶øOA¡¢BCƽÐУ¬ÄÇôËüÃǵÄбÂÊÏàͬ£¬ÓÉ´Ë¿ÉÈ·¶¨Ö±ÏßBCµÄ½âÎöʽ£»
£¨2£©¸ù¾ÝÖ±ÏßBCµÄ½âÎöʽ¿ÉÇóµÃCµã×ø±ê£¬È»ºó¿ÉÀûÓôý¶¨ÏµÊý·¨ÇóµÃ¸ÃÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©¸ù¾Ý£¨2£©ËùµÃÅ×ÎïÏߵĽâÎöʽ£¬¿ÉÇóµÃ¶¥µãDµÄ×ø±ê£¬¼´¿ÉµÃµ½BD¡¢BC¡¢CDµÄ³¤£¬ÀûÓù´¹É¶¨ÀíÄ涨Àí¼´¿ÉÅж¨¡÷BCDÊÇÖ±½ÇÈý½ÇÐΣ¬ÇÒ¡ÏBDC=90¡ã£¬¸ù¾ÝÅ×ÎïÏ߶ԳÆÖá·½³Ì¿ÉµÃµ½Eµã×ø±ê£¬½ø¶ø¿ÉÇóµÃOEµÄ³¤£¬ÈôÒÔO¡¢E¡¢PΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷BCDÏàËÆ£¬ÒÑÖª¡ÏBDC=¡ÏPEO=90¡ã£¬ÄÇôÓÐÁ½ÖÖÇé¿öÐèÒª¿¼ÂÇ£º
¢Ù¡÷PEO¡×¡÷BDC£¬¢Ú¡÷OEP¡×¡÷BDC£®
¸ù¾ÝÉÏÃæÁ½×鲻ͬµÄÏàËÆÈý½ÇÐÎËùµÃ²»Í¬µÄ±ÈÀýÏ߶Σ¬¼´¿ÉµÃµ½PEµÄ³¤£¬½ø¶øÇó³öPµãµÄ×ø±ê£®£¨ÐèҪעÒâµÄÊÇPµã¿ÉÄÜÔÚEµãÉÏ·½Ò²¿ÉÄÜÔÚEµãÏ·½£©
£¨2£©¸ù¾ÝÖ±ÏßBCµÄ½âÎöʽ¿ÉÇóµÃCµã×ø±ê£¬È»ºó¿ÉÀûÓôý¶¨ÏµÊý·¨ÇóµÃ¸ÃÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©¸ù¾Ý£¨2£©ËùµÃÅ×ÎïÏߵĽâÎöʽ£¬¿ÉÇóµÃ¶¥µãDµÄ×ø±ê£¬¼´¿ÉµÃµ½BD¡¢BC¡¢CDµÄ³¤£¬ÀûÓù´¹É¶¨ÀíÄ涨Àí¼´¿ÉÅж¨¡÷BCDÊÇÖ±½ÇÈý½ÇÐΣ¬ÇÒ¡ÏBDC=90¡ã£¬¸ù¾ÝÅ×ÎïÏ߶ԳÆÖá·½³Ì¿ÉµÃµ½Eµã×ø±ê£¬½ø¶ø¿ÉÇóµÃOEµÄ³¤£¬ÈôÒÔO¡¢E¡¢PΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷BCDÏàËÆ£¬ÒÑÖª¡ÏBDC=¡ÏPEO=90¡ã£¬ÄÇôÓÐÁ½ÖÖÇé¿öÐèÒª¿¼ÂÇ£º
¢Ù¡÷PEO¡×¡÷BDC£¬¢Ú¡÷OEP¡×¡÷BDC£®
¸ù¾ÝÉÏÃæÁ½×鲻ͬµÄÏàËÆÈý½ÇÐÎËùµÃ²»Í¬µÄ±ÈÀýÏ߶Σ¬¼´¿ÉµÃµ½PEµÄ³¤£¬½ø¶øÇó³öPµãµÄ×ø±ê£®£¨ÐèҪעÒâµÄÊÇPµã¿ÉÄÜÔÚEµãÉÏ·½Ò²¿ÉÄÜÔÚEµãÏ·½£©
½â´ð£º½â£º£¨1£©ÓÉÖ±ÏßOAÓë·´±ÈÀýº¯ÊýµÄͼÏó½»ÓÚµãA£¨3£¬3£©£¬
µÃÖ±ÏßOAΪ£ºy=x£¬Ë«ÇúÏßΪ£ºy=
£¬
µãB£¨6£¬m£©´úÈëy=
µÃm=
£¬µãB£¨6£¬
£©£¬£¨1·Ö£©
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=x+b£¬ÓÉÖ±ÏßBC¾¹ýµãB£¬
½«x=6£¬y=
£¬´úÈëy=x+bµÃ£ºb=-
£¬£¨1·Ö£©
ËùÒÔ£¬Ö±ÏßBCµÄ½âÎöʽΪy=x-
£»£¨1·Ö£©
£¨2£©ÓÉÖ±Ïßy=x-
µÃµãC£¨0£¬-
£©£¬
Éè¾¹ýA¡¢B¡¢CÈýµãµÄ¶þ´Îº¯ÊýµÄ½âÎöʽΪy=ax2+bx-
½«A¡¢BÁ½µãµÄ×ø±ê´úÈëy=ax2+bx-
£¬µÃ£º
£¬£¨1·Ö£©
½âµÃ
£¨1·Ö£©
ËùÒÔ£¬Å×ÎïÏߵĽâÎöʽΪy=-
x2+4x-
£»£¨1·Ö£©
£¨3£©´æÔÚ£®
°Ñy=-
x2+4x-
Åä·½µÃy=-
(x-4)2+
£¬
ËùÒԵõãD£¨4£¬
£©£¬¶Ô³ÆÖáΪֱÏßx=4£¨1·Ö£©
µÃ¶Ô³ÆÖáÓëxÖá½»µãµÄ×ø±êΪE£¨4£¬0£©£®£¨1·Ö£©
ÓÉBD=
£¬BC=
£¬CD=
£¬µÃCD2=BC2+BD2£¬ËùÒÔ£¬¡ÏDBC=90¡ã£¨1·Ö£©
ÓÖ¡ÏPEO=90¡ã£¬ÈôÒÔO¡¢E¡¢PΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷BCDÏàËÆ£¬ÔòÓУº
¢Ù
=
£¬¼´
=
£¬µÃPE=
£¬ÓÐP1£¨4£¬
£©£¬P2£¨4£¬-
£©
¢Ú
=
£¬¼´
=
£¬µÃPE=12£¬ÓÐP3£¨4£¬12£©£¬P4£¨4£¬-12£©£¨3·Ö£©
ËùÒÔ£¬µãPµÄ×ø±êΪ£¨4£¬
£©£¬£¨4£¬-
£©£¬£¨4£¬12£©£¬£¨4£¬-12£©£®
µÃÖ±ÏßOAΪ£ºy=x£¬Ë«ÇúÏßΪ£ºy=
9 |
x |
µãB£¨6£¬m£©´úÈëy=
9 |
x |
3 |
2 |
3 |
2 |
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=x+b£¬ÓÉÖ±ÏßBC¾¹ýµãB£¬
½«x=6£¬y=
3 |
2 |
9 |
2 |
ËùÒÔ£¬Ö±ÏßBCµÄ½âÎöʽΪy=x-
9 |
2 |
£¨2£©ÓÉÖ±Ïßy=x-
9 |
2 |
9 |
2 |
Éè¾¹ýA¡¢B¡¢CÈýµãµÄ¶þ´Îº¯ÊýµÄ½âÎöʽΪy=ax2+bx-
9 |
2 |
½«A¡¢BÁ½µãµÄ×ø±ê´úÈëy=ax2+bx-
9 |
2 |
|
½âµÃ
|
ËùÒÔ£¬Å×ÎïÏߵĽâÎöʽΪy=-
1 |
2 |
9 |
2 |
£¨3£©´æÔÚ£®
°Ñy=-
1 |
2 |
9 |
2 |
1 |
2 |
7 |
2 |
ËùÒԵõãD£¨4£¬
7 |
2 |
µÃ¶Ô³ÆÖáÓëxÖá½»µãµÄ×ø±êΪE£¨4£¬0£©£®£¨1·Ö£©
ÓÉBD=
8 |
72 |
80 |
ÓÖ¡ÏPEO=90¡ã£¬ÈôÒÔO¡¢E¡¢PΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷BCDÏàËÆ£¬ÔòÓУº
¢Ù
OE |
BC |
PE |
DB |
4 | ||
6
|
PE | ||
2
|
4 |
3 |
4 |
3 |
4 |
3 |
¢Ú
OE |
DB |
PE |
BC |
4 | ||
2
|
PE | ||
6
|
ËùÒÔ£¬µãPµÄ×ø±êΪ£¨4£¬
4 |
3 |
4 |
3 |
µãÆÀ£º´ËÌ⿼²éÁËÓôý¶¨ÏµÊý·¨È·¶¨º¯Êý½âÎöʽµÄ·½·¨¡¢º¯ÊýͼÏóÉϵãµÄ×ø±êÒâÒå¡¢Ö±½ÇÈý½ÇÐεÄÅж¨¡¢ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£®Òª×¢ÒâµÄÊÇ£¨3£©ÌâÖУ¬ÔÚÏàËÆÈý½ÇÐεĶÔÓ¦±ßºÍ¶ÔÓ¦½Ç²»È·¶¨µÄÇé¿öÏÂÐèÒª·ÖÀàÌÖÂÛ£¬ÒÔÃ⩽⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿