题目内容

【题目】如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.

(1)试判断直线AB与直线CD的位置关系,并说明理由;

(2)如图2,∠BEF与∠EFD的角平分线交于点P,EPCD交于点G,点HMN上一点,且GH⊥EG,求证:PF∥GH;

(3)如图3,在(2)的条件下,连接PH,KGH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.

【答案】(1)证明见解析;(2)证明见解析;(3)45°

【解析】

试题(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证ABCD

(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EGPF,故结合已知条件GHEG,易证PFGH

(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.

试题解析:(1)如图1,

∵∠1与∠2互补,

∴∠1+∠2=180°.

又∵∠1=∠AEF,∠2=∠CFE

∴∠AEF+∠CFE=180°,

ABCD

(2)如图2,由(1)知,ABCD

∴∠BEF+∠EFD=180°.

又∵∠BEF与∠EFD的角平分线交于点P

∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,

∴∠EPF=90°,即EGPF

GHEG

PF∥GH

(3)∠HPQ的大小不发生变化,理由如下:

如图3,∵∠1=∠2,

∴∠3=2∠2.

又∵GHEG

∴∠4=90°-∠3=90°-2∠2.

∴∠EPK=180°-∠4=90°+2∠2.

PQ平分∠EPK

∴∠QPK=EPK=45°+∠2.

∴∠HPQ=∠QPK-∠2=45°,

∴∠HPQ的大小不发生变化,一直是45°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网