题目内容

(2004•烟台)先阅读下面的材料,然后解答问题:
在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.
如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.

如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.
不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.
问题:(1)有n台机床时,P应设在何处?
(2)根据(1)的结论,求|x-1|+|x-2|+|x-3|+…|x-617|的最小值.
【答案】分析:(1)分n为偶数时,n为奇数时两种情况讨论P应设的位置.
(2)根据绝对值的几何意义,找到1和617正中间的点,即可求出|x-1|+|x-2|+|x-3|+…|x-617|的最小值.
解答:解:(1)当n为偶数时,P应设在第台和(+1)台之间的任何地方,
当n为奇数时,P应设在第台的位置.

(2)根据绝对值的几何意义,求|x-1|+|x-2|+|x-3|+|x-617|的最小值
就是在数轴上找出表示x的点,使它到表示1,617各点的距离之和最小,根据问题1的结论,当x=309时,原式的值最小,最小值是308+307+…+1+1+2+…+308=95172.
点评:本题需要运用分类讨论思想,主要考查了学生的观察、实验和猜想、归纳能力,掌握从特殊到一般猜想的方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网