题目内容
【题目】如图,AD//EF,∠1+∠2=180°,
(1)若∠1=50°,求∠BAD的度数;
(2)若DG⊥AC,垂足为G,∠BAC=90°,试说明:DG平分∠ADC.
【答案】(1)50°(2)见解析.
【解析】
(1)根据∠1=50°,∠1+∠2=180°,可求出∠2=130°,再由AD//EF,可知∠BAD=180°-∠2=50°;(2)由(1)可知∠1=∠BAD,再利用DG⊥AC,∠BAC=90°,得出AB∥DG,故∠BAD=∠ADG,故∠1=∠ADG,即可知DG平分∠ADC.
(1)∵∠1=50°,∠1+∠2=180°,
∴∠2=130°,
又∵AD//EF,
∴∠BAD=180°-∠2=50°;
(2)由(1)可知∠1=∠BAD,
∵DG⊥AC,∠BAC=90°,
∴AB∥DG,
∴∠BAD=∠ADG,
∴∠1=∠ADG,
∴DG平分∠ADC.
【题目】某山区有若干名中、小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a元,资助一名小学生的学习费用需要b元.某校学生积极捐款,初中各年级学生捐款数额与其捐助贫困中学生和小学生人数的部分情况如下表:
捐款数额/元 | 资助贫困中学生人数/名 | 资助贫困小学生人数/名 | |
七年级 | 4000 | 2 | 4 |
八年级 | 4200 | 3 | 3 |
九年级 | 5000 |
(1)求a,b的值;
(2)九年级学生的捐款恰好解决了剩余贫困中小学生的学习费用,请计算九年级学生可捐助的贫困小学生人数.
【题目】如图,点E是矩形ABCD边AB上一动点(不与点B重合),过点E作EF⊥DE交BC于点F,连接DF.已知AB = 4cm,AD = 2cm,设A,E两点间的距离为xcm,△DEF面积为ycm2.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)确定自变量x的取值范围是 ;
(2)通过取点、画图、测量、分析,得到了x与y的几组值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | … |
y/cm2 | 4.0 | 3.7 | 3.9 | 3.8 | 3.3 | 2.0 | … |
(说明:补全表格时相关数值保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF面积最大时,AE的长度为 cm.