ÌâÄ¿ÄÚÈÝ
ÈçÏÂÊý±íÊÇÓÉ´Ó1¿ªÊ¼µÄÁ¬Ðø×ÔÈ»Êý×é³É£¬¹Û²ì¹æÂɲ¢Íê³É¸÷ÌâµÄ½â´ð£®
1
2 3 4
5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36
¡¡¡¡¡¡¡¡¡¡
£¨1£©±íÖеÚ8ÐеÄ×îºóÒ»¸öÊýÊÇ______________£¬ËüÊÇ×ÔÈ»Êý_____________µÄƽ·½£¬µÚ8Ðй²ÓÐ____________¸öÊý£»
£¨2£©Óú¬nµÄ´úÊýʽ±íʾ£ºµÚnÐеĵÚÒ»¸öÊýÊÇ___________________£¬×îºóÒ»¸öÊýÊÇ
________________£¬µÚnÐй²ÓÐ_______________¸öÊý£»
£¨3£©ÇóµÚnÐи÷ÊýÖ®ºÍ£®
1
2 3 4
5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36
¡¡¡¡¡¡¡¡¡¡
£¨1£©±íÖеÚ8ÐеÄ×îºóÒ»¸öÊýÊÇ______________£¬ËüÊÇ×ÔÈ»Êý_____________µÄƽ·½£¬µÚ8Ðй²ÓÐ____________¸öÊý£»
£¨2£©Óú¬nµÄ´úÊýʽ±íʾ£ºµÚnÐеĵÚÒ»¸öÊýÊÇ___________________£¬×îºóÒ»¸öÊýÊÇ
________________£¬µÚnÐй²ÓÐ_______________¸öÊý£»
£¨3£©ÇóµÚnÐи÷ÊýÖ®ºÍ£®
ÂԽ⣺(1)64£¬8£¬15£»
£¨2£©n2-2n+2£¬n2£¬(2n-1);
£¨3£©µÚnÐи÷ÊýÖ®ºÍ£º
£¨2£©n2-2n+2£¬n2£¬(2n-1);
£¨3£©µÚnÐи÷ÊýÖ®ºÍ£º
£¨1£©¹Û²ìÊý±í¿ÉÖª£¬±íÖеÚ8ÐеÄ×îºóÒ»¸öÊýÊÇ64£¬ËüÊÇ×ÔÈ»Êý8µÄƽ·½£¬µÚ8Ðй²ÓÐ15¸öÊý£¬¹Ê´ð°¸Îª£º64£¬8£¬15£»
£¨2£©ÓÉ£¨1£©µÃ³öÒ»°ã¹æÂÉ£ºµÚnÐеĵÚÒ»¸öÊýÊÇ£¨n-1£©2+1£¬×îºóÒ»¸öÊýÊÇn2£¬µÚnÐй²2n-1¸öÊý£¬
¹Ê´ð°¸Îª£º£¨n-1£©2+1£¬n2£¬2n-1£»
£¨3£©µÚnÐеÚÒ»¸öÊýΪ£¨n-1£©2+1£¬×îºóÒ»¸öΪn2 ×ܹ²2n-1¸öÊý
ËùÒÔµÚnÐи÷ÊýÖ®ºÍ= [£¨n-1£©2+1+n2]¡Á£¨2n-1£©=£¨n2-n+1£©£¨2n-1£©
£¨2£©ÓÉ£¨1£©µÃ³öÒ»°ã¹æÂÉ£ºµÚnÐеĵÚÒ»¸öÊýÊÇ£¨n-1£©2+1£¬×îºóÒ»¸öÊýÊÇn2£¬µÚnÐй²2n-1¸öÊý£¬
¹Ê´ð°¸Îª£º£¨n-1£©2+1£¬n2£¬2n-1£»
£¨3£©µÚnÐеÚÒ»¸öÊýΪ£¨n-1£©2+1£¬×îºóÒ»¸öΪn2 ×ܹ²2n-1¸öÊý
ËùÒÔµÚnÐи÷ÊýÖ®ºÍ= [£¨n-1£©2+1+n2]¡Á£¨2n-1£©=£¨n2-n+1£©£¨2n-1£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿