题目内容
解不等式
若x2﹣16x+m2是一个完全平方式,则m=_____;若m﹣=9,则m2+=_____.
如图,小明所在教学楼的每层高度为3.5 m,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B处测得M的仰角为31°,已知每层楼的窗台离该层的地面高度均为1 m.
(1)AB=________m;
(2)求旗杆MN的高度.(结果保留两位小数)
(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是____.
神奇的数学世界是不是只有锻炼思维的数字游戏?每天都在面对繁杂的数字计算?答案当然是否定的,曼妙的数学畅游在迷人的数字和丰富多彩的图形之间,将数与形巧妙地融汇在一起,不可分割.我们都知道,实数与数轴上的点一一对应,数轴上的线段可以由端点所对应的实数确定,这是一维的数与形;增加到两条数轴,可以形成平面直角坐标系,这样有序数对与平面内的点一一对应,平面内的多边形及其内容可以由多边形的边上所有点的坐标所确定,这是二维的数与形.而在平面直角坐标系中的图形更是神秘,在平面内任意画一条(或多条)曲线(或直线),它(们)把平面分割成的部分都称为区域,特别地,如果曲线首尾相接,那么形成的有限部分也称为封闭区域.如何研究这些区域呢?当然离不开数,我们可以通过区域内点的坐标规律来刻画图形.反过来,我们也可以根据点坐标的规律在平面直角坐标系内找到它们,画出相应的图形.聪明的你看懂了吗?试着做做看.
(1)分别解不等式和,并把不等式的解集画在同一个数轴上;
(2)点P(x,y)在平面直角坐标系的第一象限,并且横坐标与纵坐标分别满足不等式和,请画出满足条件的点P所在的最大区域,并求出区域的面积;
(3)去掉(2)中“点P在第一象限”这个条件,其余条件保持不变,求满足条件的点P所在最大区域与平面直角坐标系第二、四象限角平分线所围成封闭区域的面积.
如图,AB//CD,若,则的度数是___________.
如图,直线a,b被直线c所截,,若,则等于()
A. B. C. D.
解不等式,并把解集在数轴上表示出来.
下列计算正确的是( )
A. a2+a2=a4 B. 2(a﹣b)=2a﹣b C. a3•a2=a5 D. (﹣b2)3=﹣b5