题目内容
【题目】如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.
(1)若正方形ABCD的边长为2,则点B、C的坐标分别为 .
(2)若正方形ABCD的边长为a,求k的值.
【答案】(1)(1,2),(3,2)(2)
【解析】
(1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;
(2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.
(1)∵正方形边长为2,
∴AB=2,
在直线y=2x中,当y=2时,x=1,
∴B(1,2),
∵OA=1,OD=1+2=3,
∴C(3,2),
故答案为:(1,2),(3,2);
(2)∵正方形边长为a,
∴AB=a,
在直线y=2x中,当y=a时,x=,
∴OA=,OD=,
∴C(,a),
将C(,a)代入y=kx,得a=k×,
解得:k=,
故答案为:.
练习册系列答案
相关题目
【题目】某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:
A型 | B型 | |
价格(万元/台) | 12 | 10 |
月污水处理能力(吨/月) | 200 | 160 |
经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.
(1)该企业有几种购买方案?
(2)哪种方案更省钱,说明理由.