题目内容

在?ABCD中,对角线相交于点O,给出下列条件:①AB=CD,AD=BC,②AD=AB,AD∥BC,③AB∥CD,AD∥BC,④AO=CO,BO=DO其中能够判定ABCD是平行四边形的有
①②③④
①②③④
分析:根据平行四边形的判定(①有两组对角分别相等的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对边分别平行的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形)推出即可.
解答:解:∵AB=CD,AD=BC,
∴四边形ABCD是平行四边形,∴①正确;
∵AD=BC,AD∥BC,
∴四边形ABCD是平行四边形,∴②正确;
∵AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形,∴③正确;
∵AO=CO,BO=DO,
∴四边形ABCD是平行四边形,∴④正确;
即其中能判定四边形ABCD是平行四边形的有①②③④,
故答案为:①②③④.
点评:本题考查了对平行四边形的判定的应用,注意:平行四边形的判定定理有:①有两组对角分别相等的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对边分别平行的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网