ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿ÏÈÔĶÁ²ÄÁÏ£¬ÔÙ½â´ðÏÂÁÐÎÊÌ⣺
ÎÒÃÇÒѾ֪µÀ£¬¶àÏîʽÓë¶àÏîʽÏà³ËµÄ·¨Ôò¿ÉÒÔÓÃƽÃ漸ºÎͼÐεÄÃæ»ýÀ´±íʾ£¬Êµ¼ÊÉÏ»¹ÓÐһЩ´úÊýºãµÈʽҲ¿ÉÒÔÓÃÕâÖÖÐÎʽ±íʾ£®ÀýÈ磺(2a£«b) (a£«b)£½2a2£«3ab£«b2¾Í¿ÉÒÔÓÃͼ¢Ù»òͼ¢ÚµÈͼÐεÄÃæ»ýÀ´±íʾ£®
(1)Çëд³öͼ¢ÛËù±íʾµÄ´úÊýºãµÈʽ£º
(2)»³öÒ»¸ö¼¸ºÎͼÐΣ¬Ê¹ËüµÄÃæ»ýÄܱíʾ(a£«b£«c)2£½a2£«b2£«c2£«2ab£«2ac£«2bc£®
(3)Çë·ÂÕÕÉÏÊö·½·¨Ð´³öÁíÒ»¸öº¬a¡¢bµÄ´úÊýºãµÈʽ£¬²¢»³öÓëÖ®¶ÔÓ¦µÄ¼¸ºÎͼÐΣ®
¡¾´ð°¸¡¿(1)(a£«2b)(2a£«b)£½2a2£«5ab£«2b2£»(2)¼û½âÎö£»(3)¼û½âÎö.
¡¾½âÎö¡¿ÊÔÌâ·ÖÎö£º£¨1£©¸ù¾Ý³¤Îª2a+b¡¢¿íΪa+2bµÄ¾ØÐÎÃæ»ýµÈÓÚ2¸ö±ß³¤ÎªaµÄÕý·½ÐΡ¢1¸ö±ß³¤ÎªbµÄÕý·½ÐΡ¢3¸ö³¤Îªa¿íΪbµÄ¾ØÐÎÃæ»ýºÍ£¬¿ÉµÃµÈʽ£»£¨2£©»Ò»¸ö±ß³¤Îªa+b+cµÄÕý·½ÐΣ¬¼´¿ÉµÃ£»£¨3£©²»Î¨Ò»£¬È磺£¨x+p£©£¨x+q£©=x2+£¨p+q£© x+pq£¬»³¤Îªx+q¡¢¿íΪx+pµÄ¾ØÐμ´¿ÉµÃ£®
ÊÔÌâ½âÎö£º(1)(2a+b)(a+2b)=2 a2+2a¡¤2b+ a¡¤b+ b2=2a2£«5ab£«2b2£»
(2)Èçͼ¢Ù£¬
(3)(x+p)(x+q)=x2+(p+q)x+pq£¬
Èçͼ¢Ú£¬
¹Ê´ð°¸Îª£º(1)(2a+b)(a+b)=2a2+3ab+b2.
¡¾ÌâÄ¿¡¿ÔÚÎ人½ÌÓýµçÊǪ́×éÖ¯µÄÒ»´Îºº×ÖÌýд´óÈüÖУ¬10Ãû²ÎÈüÑ¡Êֵ÷ÖÇé¿öÈçÏ£º
ÈËÊý | 3 | 4 | 2 | 1 |
·ÖÊý | 80 | 85 | 90 | 95 |
ÄÇôÕâ10ÃûÑ¡ÊÖËùµÃ·ÖÊýµÄÖÐλÊýºÍÖÚÊý·Ö±ðÊÇ£¨ £©
A. 85ºÍ85 B. 85.5ºÍ85 C. 85ºÍ4 D. 85.5ºÍ4