题目内容
(2009•沙市区二模)如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;
(2)已知AB=15cm,BC=9cm,P是射线DE上的动点,设DP=xcm(x>0).当x为何值时,△PBC的周长最小.
【答案】分析:(1)根据已知可得到∠BAC=∠ADF和∠DFA=∠ACB,从而利用有两对角对应相等的两三角形相似,得到△DFA∽△ACB,根据相似三角形的对应边成比例及AD=CD即可推出AB•AF=CB•CD;
(2)根据两点之间线段最短,当点P在AB上时,PA+PB最小即点P与E重合时,△PBC周长最小,从而利用勾股定理分别求得AC、AF、AE、DE的长,从而就求得了x的值.
解答:(1)证明:∵∠DAB=90°,
∴∠DAF+∠BAC=90°.
∵DF⊥AC,
∴∠DAF+∠ADF=90°,
∴∠BAC=∠ADF,
又∵∠DFA=∠ACB,
∴△DFA∽△ACB.
∴.
∴AF•AB=BC•AD.
∵AD=CD,
∴AB•AF=CB•CD.
(2)解:C△PBC=PB+PC+BC,
∵AD=CD,DF⊥AC,
∴DE是AC的垂直平分线.
∴PC=PA根据两点之间线段最短,当点P在AB上时,PA+PB最小即点P与E重合时,△PBC周长最小.
∵∠ACB=90°,
∴.
∴.
∵AF•AB=CB•AD,即6×15=9•AD,
∴AD=10.
∵FE是△ABC中位线,
∴.
∴DE==12.5.
∴x=12.5时,△PBC周长最小.
点评:此题考查学生对相似三角形的判定及线段最短问题的理解及运用.
(2)根据两点之间线段最短,当点P在AB上时,PA+PB最小即点P与E重合时,△PBC周长最小,从而利用勾股定理分别求得AC、AF、AE、DE的长,从而就求得了x的值.
解答:(1)证明:∵∠DAB=90°,
∴∠DAF+∠BAC=90°.
∵DF⊥AC,
∴∠DAF+∠ADF=90°,
∴∠BAC=∠ADF,
又∵∠DFA=∠ACB,
∴△DFA∽△ACB.
∴.
∴AF•AB=BC•AD.
∵AD=CD,
∴AB•AF=CB•CD.
(2)解:C△PBC=PB+PC+BC,
∵AD=CD,DF⊥AC,
∴DE是AC的垂直平分线.
∴PC=PA根据两点之间线段最短,当点P在AB上时,PA+PB最小即点P与E重合时,△PBC周长最小.
∵∠ACB=90°,
∴.
∴.
∵AF•AB=CB•AD,即6×15=9•AD,
∴AD=10.
∵FE是△ABC中位线,
∴.
∴DE==12.5.
∴x=12.5时,△PBC周长最小.
点评:此题考查学生对相似三角形的判定及线段最短问题的理解及运用.
练习册系列答案
相关题目