题目内容

已知,如图,Rt△ABC中,∠ACB=90°,AB=5,两直角边AC、BC的长是关于x的方程x2-(m+5)x+6m=0的两个实数根.
(1)求m的值及AC、BC的长(BC>AC);
(2)在线段BC的延长线上是否存在点D,使得以D、A、C为顶点的三角形与△ABC相似?若存在,求出CD的长;若不存在,请说明理由.
(1)设方程x2-(m+5)x+6m=0的两个根分别是x1、x2
∴x1+x2=m+5,x1•x2=6m
∴x12+x22=(x1+x22-2x1x2=(m+5)2-2×6m
∵Rt△ABC中,∠ACB=90°,AB=5
∴x12+x22=AB2
∴(m+5)2-2×6m=52∴m2-2m=0
∴m=0或m=2
当m=0时,原方程的解分别为x1=0,x2=5,但三角形的边长不能为0,所以m=0舍去.
当m=2时,原方程为x2-7x+12=0,其解为x1=3,x2=4,所以两直角边AC=3,BC=4
∴m=2,AC=3,BC=4

(2)存在;
已知AC=3,BC=4,AB=5
欲使以△AD1C为顶点的三角形与△ABC相似,则
AB
AD1
=
AC
CD1
=
BC
AC
,∴
3
CD1
=
4
3
,则CD=
9
4

欲使以△AD2C为顶点的三角形与△ABC相似,则
AB
AD2
=
BC
CD2
=
AC
AC
,∴BC=CD2=4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网