题目内容
(2011•陕西)2011年4月28日,以“天人长安,创意自然一一城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园,这次园艺会的门票分为个人票和团体票两大类,其中个人票设置有三种:
某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票的张数是A种票张数的3倍还多8张,设购买A种票张数为x,C种票张数为y
(1)写出y与x之间的函数关系式;
(2)设购票总费用为W元,求出W(元)与X(张)之间的函数关系式;
(3)若每种票至少购买1张,其中购买A种票不少于20张,则有几种购票方案?并求出购票总费用最少时,购买A,B,C三种票的张数.
票得种类 | 夜票(A) | 平日普通票(B) | 指定日普通票(C) |
单价(元/张) | 60 | 100 | 150 |
(1)写出y与x之间的函数关系式;
(2)设购票总费用为W元,求出W(元)与X(张)之间的函数关系式;
(3)若每种票至少购买1张,其中购买A种票不少于20张,则有几种购票方案?并求出购票总费用最少时,购买A,B,C三种票的张数.
解(1)B中票数为:3x+8
则y=100﹣x﹣3x﹣8化简得,
y=﹣4x+92
即y与x之间的函数关系式为:y=﹣4x+92
(2)w=60x+100(3x+8)+150(﹣4x+92)化简得,
w=﹣240x+14600
即购票总费用W与X(张)之间的函数关系式为:w=﹣240x+14600
(3)由题意得,解得,
20≤x<23
∵x是正整数,∴x可取20、21、22
那么共有3种购票方案.
从函数关系式w=﹣240x+14600可以看出w随x的增大而减小,
当x=22时,w的最值最小,即当A票购买22张时,购票的总费用最少.
购票总费用最少时,购买A、B、C三种票的张数分别为22、74、4.
则y=100﹣x﹣3x﹣8化简得,
y=﹣4x+92
即y与x之间的函数关系式为:y=﹣4x+92
(2)w=60x+100(3x+8)+150(﹣4x+92)化简得,
w=﹣240x+14600
即购票总费用W与X(张)之间的函数关系式为:w=﹣240x+14600
(3)由题意得,解得,
20≤x<23
∵x是正整数,∴x可取20、21、22
那么共有3种购票方案.
从函数关系式w=﹣240x+14600可以看出w随x的增大而减小,
当x=22时,w的最值最小,即当A票购买22张时,购票的总费用最少.
购票总费用最少时,购买A、B、C三种票的张数分别为22、74、4.
略
练习册系列答案
相关题目