题目内容
△ABC的内切圆⊙O和各边分别相切于D,E,F,则O是△DEF的
- A.三条中线的交点
- B.三条高的交点
- C.三条角平分线的交点
- D.三条边的垂直平分线的交点
D
分析:由题意知点O是△ABC的内心,因此OD=OE=OF,所以点O也是△DEF的外心,而外心是三角形三边中垂线的交点,由此得解.
解答:∵⊙O是△ABC的内切圆,
∴OD=OE=OF,
∴点O是△DEF的外心,
∴O是△DEF三边垂直平分线的交点;
故选D.
点评:此题主要考查了三角形的内心与外心的性质;
三角形的内心:三条角平分线的交点,到三角形三边的距离相等;
三角形的外心:三边中垂线的交点,到三角形三个顶点的距离相等.
分析:由题意知点O是△ABC的内心,因此OD=OE=OF,所以点O也是△DEF的外心,而外心是三角形三边中垂线的交点,由此得解.
解答:∵⊙O是△ABC的内切圆,
∴OD=OE=OF,
∴点O是△DEF的外心,
∴O是△DEF三边垂直平分线的交点;
故选D.
点评:此题主要考查了三角形的内心与外心的性质;
三角形的内心:三条角平分线的交点,到三角形三边的距离相等;
三角形的外心:三边中垂线的交点,到三角形三个顶点的距离相等.
练习册系列答案
相关题目
如图,⊙O为△ABC的内切圆,∠C=90度,OA的延长线交BC于点D,AC=4,CD=1,则⊙O的半径等于( )
A、
| ||
B、
| ||
C、
| ||
D、
|
⊙O是△ABC的内切圆,且∠C=90°,切点为D,E,F,若AF,BE的长是方程x2-13x+30=0的两个根,则S△ABC的值为( )
A、30 | B、15 | C、60 | D、13 |